Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Clin Chim Acta ; 542: 117266, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36822454

BACKGROUND: 3-Methylcrotonyl-CoA carboxylase deficiency (3-MCCD) is an autosomal recessive inborn defect of leucine catabolism caused by MCCC1 or MCCC2 variants. 3-MCCD is considered to be a relatively benign disorder with favorable outcome. We report the biochemical, clinical, and molecular features of patients with 3-MCCD. METHODS: From January 2009 to August 2022, 4,402,587 newborns were screened by tandem mass spectrometry. Newborns with increased C5OH concentrations were recalled for repeated testing, urine organic acid analysis and molecular genetic analysis were performed if the second test was still positive. RESULTS: A total of 53 patients were diagnosed with 3-MCCD. The estimated incidence of 3-MCCD in Zhejiang Province was 1 in 83,068 newborns. All these 53 patients exhibited increased C5OH concentrations in blood. 94 % (50/53) of the patients had markedly increased urinary 3-hydroxyisovaleric acid and 3-methylcrotonylglycine. All these 53 patients did not present any clinical symptom. Twenty-three of 53 patients had secondary carnitine deficiency. Twenty-eight patients had variants in MCCC1 and 25 had variants in MCCC2. Eleven novel variants were found in MCCC1 and MCCC2. The c.639 + 2 T > A and c.1144-1147delinsTTTT were the most common variant in MCCC1 and MCCC2 gene, respectively. CONCLUSION: We elucidated the incidence of 3-MCCD in Zhejiang province, China. All patients showed asymptomatic and present normal growth and development during follow-up. Eleven novel MCCC1 and MCCC2 variants were identified, which expanded the variant spectrum.


Neonatal Screening , Humans , Infant, Newborn , China/epidemiology , Mutation , Neonatal Screening/methods
2.
Front Genet ; 13: 823687, 2022.
Article En | MEDLINE | ID: mdl-35360862

Background: Disorders of mitochondrial carnitine-acylcarnitine cycle is a heterogeneous group of hereditary diseases of mitochondrial ß-oxidation of fatty acids tested in NBS program in Zhejiang province, China. Large-scale studies reporting disorders of mitochondrial carnitine-acylcarnitine cycle among Chinese population in NBS are limited. The aim of this study was to explain the incidence and biochemical, clinical, and genetic characteristics of disorders of mitochondrial carnitine-acylcarnitine cycle in NBS. Methods: From January 2009 to June 2021, 4,070,375 newborns were screened by tandem mass spectrometry. Newborns with elevated C0 levels and/or C0/(C16 + C18) ratios were identified as having CPT1D, whereas those with decreased C0 levels and/or C0/(C16 + C18) ratios and/or elevated C12-C18:1 level were identified as having CPT2D or CACTD. Suspected positive patients were further subjected to genetic analysis. All confirmed patients received biochemical and nutritional treatment, as well as follow-up sessions. Results: Overall, 20 patients (12 with CPT1D, 4 with CPT2D, and 4 with CACTD) with disorders of mitochondrial carnitine-acylcarnitine cycle were diagnosed by NBS. The overall incidence of these disorders was one in 203,518 newborns. In toal, 11 patients with CPT1D exhibited increased C0 levels and C0/(C16 + C18) ratios. In all patients of CPT2D, all long chain acyl-carnitines levels were elevated except for case 14 having normal C12 levels. In all patients with CACTD, all long chain acyl-carnitines levels were elevated except for case 17 having normal C12, C18, and C18:1 levels. Most patients with CPT1D were asymptomatic. Overall, two of 4 patients with CPT2D did not present any clinical symptom, but other two patients died. In 4 cases with CACTD, the disease was onset after birth, and 75% patients died. In total, 14 distinct mutations were identified in CPT1A gene, of which 11 were novel and c.1910C > A (p.S637T), c.740C > T (p.P247L), and c.1328T > C (p.L443P) were the most common mutations. Overall, 3 novel mutations were identified in CPT2 gene, and the most frequent mutation was c.1711C > A (p.P571T). The most common variant in SLC25A20 gene was c.199-10T > G. Conclusion: Disorders of mitochondrial carnitine-acylcarnitine cycle can be detected by NBS, and the combined incidence of these disorders in newborns was rare in Zhejiang province, China. Most patients presented typical acylcarnitine profiles. Most patients with CPT1D presented normal growth and development, whereas those with CPT2D/CACTD exhibited a high mortality rate. Several novel CPT1A and CPT2 variants were identified, which expanded the variant spectrum.

3.
Clin Chim Acta ; 530: 113-118, 2022 May 01.
Article En | MEDLINE | ID: mdl-35367405

BACKGROUND: Glutaric acidemia type 1 (GA1) is a treatable neurometabolic disorder caused by biallelic variants in the glutaryl-CoA dehydrogenase (GCDH) gene. There are few large-scale reports describing newborn screening (NBS) for GA1 in China. We report the NBS results, genotypes, and clinical features of patients diagnosed through NBS. METHODS: From January 2009 to August 2021, 4,202,587 newborns were screened by tandem mass spectrometry. Newborns with increased glutarylcarnitine (C5DC) concentrations were recalled for repeated test, and confirmatory examinations were performed if the second test was still positive. The pathogenicity of novel variants was predicted using computational programs. RESULTS: A total of 693 had increased C5DC concentrations, and 19 patients were diagnosed with GA1. Thus, the estimated incidence of GA1 in Zhejiang Province was 1 in 221,053 newborns. All the 19 patients had markedly increased C5DC concentrations and C5DC/octanoylcarnitine (C8) ratios; one had a slightly low free carnitine concentration. Seventeen (17/18, 94.4%) patients had increased GA concentrations, 15 were of high excretor phenotype and 3 were of low excretor phenotype. Twenty-three distinct GCDH variants were detected, of which 2were novel. Novel variants were predicted to be potentially pathogenic by computational programs. c.1244-2A > C was the most common variant, with an allelic frequency of 14.7%, followed by c.914C > T (p.S305L) (8.8%). The most common clinical symptom was movement disorder, followed by seizure, macrocephaly, and failure to thrive. Sylvian fissures widening was the most common MRI finding. CONCLUSIONS: Nineteen GA1 patients were diagnosed through the large-scale NBS in Zhejiang Province, with an estimated incidence of 1 in 221,053 newborns. The GCDH mutational spectrum is heterogenous, with the c.1244-2A > C variant being the most frequent variant in this population. NBS for GA1 should be promoted to achieve timely diagnosis and treatment.


Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases, Metabolic/diagnosis , Brain Diseases, Metabolic/genetics , China , Glutaryl-CoA Dehydrogenase/deficiency , Glutaryl-CoA Dehydrogenase/genetics , Humans , Infant, Newborn , Neonatal Screening
4.
Transl Pediatr ; 10(2): 459-463, 2021 Feb.
Article En | MEDLINE | ID: mdl-33708533

Beta-ketothiolase (mitochondrial acetoacetyl-CoA thiolase, T2) is a rare autosomal recessive disease caused by ACAT1 gene pathogenic variant involving isoleucine catabolism and ketone body metabolism disorder. The onset of ketoacidotic crisis commonly follows prior concurrent diseases or triggers including long-time fasting, infections, intake of high-level of lipids or proteins, etc. A girl aged 8 months presented with fever and cough on the day after vaccination of the second dose of Japanese encephalitis inactivated; on the second day after vaccination, she was admitted to the local hospital because of unconsciousness and dyspnea. After 1 day of treatment at the local hospital, she was referred to our hospital due to exacerbated conditions including unconsciousness and convulsion. When referring to our hospital, she had metabolic acidosis, hypokalemia, hypernatremia, hyperammonemia, and a Glasgow coma scale of 8 and Kussmaul breathing. Five percent NaHCO3 (24 mL/kg), glucose and insulin (4-6 g glucose/1 U insulin) were continuously infused for correcting acidosis. L-carnitine (350 mg/kg/day) was given for ensuring the energy and increasing exudates of metabolites after admission. Protein was limited at 1.5 g/kg/day. Mechanical ventilation support and hemodialysis were used. The patient was still under unconsciousness after 2 weeks of intensive treatment in the Pediatric Intensive Care Unit (PICU). Due to her severe illness, the child's parents ultimately decided to redirect their goals of care, and the child was discharged home where she died. For children with acute unexplainable metabolic acidosis, differential diagnosis of T2 deficiency should be considered. Rigorous indicative treatments including mechanical ventilation and hemodialysis should be given timely if ketoacidotic crisis occurred in patients with T2 deficiency.

5.
Front Genet ; 10: 1255, 2019.
Article En | MEDLINE | ID: mdl-31921298

Background: Spinal muscular atrophy (SMA) is the most common neurodegenerative disorder and the leading genetic cause of infant mortality. Early detection of SMA through newborn screening (NBS) is essential to selecting pre-symptomatic treatment and ensuring optimal outcome, as well as, prompting the urgent need for effective screening methods. This study aimed to determine the feasibility of applying an Agena iPLEX SMA assay in NBS for SMA in China. Methods: We developed an Agena iPLEX SMA assay based on the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and evaluated the performance of this assay through assessment of 167 previously-genotyped samples. Then we conducted a pilot study to apply this assay for SMA NBS. The SMN1 and SMN2 copy number of screen-positive patients were determined by multiplex ligation-dependent probe amplification analysis. Results: The sensitivity and specificity of the Agena iPLEX SMA assay were both 100%. Three patients with homozygous SMN1 deletion were successfully identified and conformed by multiplex ligation-dependent probe amplification analysis. Two patients had two SMN2 copies, which was correlated with severe SMA type I phenotype; both of them exhibited neurogenic lesion and with decreased muscle power. Another patient with four SMN2 copies, whose genotype correlated with milder SMA type III or IV phenotype, had normal growth and development without clinical symptoms. Conclusions: The Agena iPLEX SMA assay is an effective and reliable approach for population-based SMA NBS. The first large-scale pilot study using this assay in the Mainland of China showed that large-scale implementation of population-based NBS for SMA is feasible.

6.
Clin Chim Acta ; 466: 68-71, 2017 Mar.
Article En | MEDLINE | ID: mdl-28089752

Argininemia is a rare autosomal recessive genetic disorder caused by deficiency of arginase Ι, resulting from mutations in the ARG1 gene. Few genetic studies of ARG1 mutations in Chinese patients have been reported. In this study, two argininemia patients were initially diagnosed by tandem mass spectrometry in newborn screening. Mutation analysis of the ARG1 gene was performed by direct sequencing. Three novel mutations were identified and in silico methods were used to predict the impact of these mutations on the activity of enzyme. Two missense mutations, p.D100N and p.R71T, in Patient-1 were predicted to lower the stability of arginase Ι by analysis of 3D crystal structure, while two nonsense mutations, p.G12X and p.E42X, in Patient-2 were predicted to lead to truncated protein. Neonatal screening combined with genetic analysis is important for timely diagnosis and initiation of interventions of a potential genetic metabolic disease such as argininemia.


Arginase/genetics , Hyperargininemia/genetics , Mutation , Neonatal Screening/methods , Asian People/genetics , DNA Mutational Analysis , Humans , Infant, Newborn
...